Phytochemistry, 1975, Vol. 14. p. 1644. Pergamon Press. Printed in England.

OCCURRENCE OF GLYCOFLAVONES IN THE ACANTHACEAE

A. G. RAMACHANDRAN NAIR, P. RAMESH and S. SANKARA SUBRAMANIAN

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India

(Received 27 December 1974)

Key Word Index—Echolium linneanum; Acanthaceae; glycoflavones; orientin, vitexin, isoorientin and isovitexin.

Plant. Echolium linneanum Kurz. (Syn. E. viride (Forsk) Merrill) (voucher specimen No. 8/74 deposited at JIPMER).

Uses. Medicinal [1,2]. Previous work. None other than phytochemical screening [3].

Present work. Shade-dried leaves, flowers and roots extracted separately with hot 90% EtOH and the solid residue from the concentrate purified by recrystallization from EtOAc and ethyl methyl ketone. The vellow flavonoid fraction was found to be a mixture of four flavone glycosides, (A-D) by PC which could not be purified by crystallization. However, they were separated into pure components (TLC) by preparative PC using n-BuOH-27% aq. HOAc (1:1). They had the following characteristics: (A) m.p. 258-60°, UV purple→yellow with NH₃; resistant to hydrolysis (2 N HCl, 3 hr) and giving luteolin on refluxing with HI in phenol, was identified as orientin by R_{f} , preparation of acetyl derivative and co-PC with an authentic sample (B) m.p. 250-52°, UV purple → light yellow with NH₃; identified similarly as vitexin. C and D, present in traces, were identified as isoorientin (6-C-glucosyl luteolin) and isovitexin (6-C-glucosyl apigenin) as above. Comment. This is the first record of the occurrence of glycoflavones in the Acanthaceae. E. linneanum which contains orientin, vitexin, isoorientin and isovitexin in the ratio 5:5:1:1, and it is interesting that all the parts of the plant are rich in glycoflavones and devoid of the corresponding free aglycones or their O-glycosides. This is not in conformity with the general flavonoid pattern in the family [4,5]. Glycoflavones may be considered to occur atypically in this genus similar to their presence in Vitex sp. [4] in the Verbenaceae.

Acknowledgements—We thank Dr. T. R. Govindachari, Director, CIBA Research Center, Bombay for the spectral data and the Principal, JIPMER, for encouragement.

REFERENCES

- Anon (1952) Wealth of India, Raw Materials, Vol. 3, p. 123, C.S.I.R., New Delhi.
- Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) Glossary of Indian Medicinal Plants, p. 103, C.S.I.R., New Delhi.
- 3. Maiti, P. C. (1968) Bull. Bot. Survey, India 10, 111.
- Harborne, J. B. (1967) Comparative Biochemistry of the Flavonoids, pp. 216 and 220, Academic Press, London.
- Nair, A. G. R. and Subramanian, S. S. (1974) Current Sci. (India) 43, 480.

Phytochemistry, 1975, Vol. 14, pp. 1644-1647. Pergamon Press. Printed in England.

SUCCEDANEAFLAVANONE—A NEW 6,6"-BINARINGENIN FROM RHUS SUCCEDANEA*

FA-CHING CHEN and YUE-MEEI LIN

Chemistry Research Center, National Taiwan University, Taipei, Taiwan 107, Republic of China

(Revised Received 24 January 1975)

Key Word Index—Rhus succedanea; Anacardiaceae; biflavanone; 6,6"-binaringenin; MS and NMR data.

Previously, we reported the isolation of hinokiflavone, amentoflavone, robustaflavone, agathisfla-

^{*} Paper read at the 9th IUPAC Symposium on Natural Products, Ottawa, Canada, June 28, 1974.